
Exploiting and Defending:
Common Web Application

Vulnerabilities

Principal Security Consultant

SANS Instructor

Denver OWASP Chapter Lead

Certifications
CISSP, GWAPT, GSSP-Java, CISM

Contact Info
Steve.kosten@cypressdefense.com

@skosten

Introduction: Steve Kosten

Principal Security Consultant

SANS Instructor & Contributing Author

Certifications

CISSP, GSSP.NET, GWAPT, GMOB, GPEN

Contact Info

aaron.cure@cypressdefense.com

@curea

Introduction: Aaron Cure

Using real attack tools

Illegal to attack targets without written
contractual consent

Obey all state and federal laws

Cypress Data Defense assumes no liability

Disclaimer

Introduction

A6: Sensitive Data Exposure

A5: Security Misconfiguration

A1: Injection

A3: Cross-Site Scripting (XSS)

A8: Cross-Site Request Forgery (CSRF)

Secure Software Development LifeCycle (SSDLC)

Agenda

Software Development LifeCycle (SDLC)

• Software Development Life Cycle

• Process for planning, creating, testing, and
deploying an information system

REQUIREMENTS
PLANNING &

DESIGN
DEVELOPMENT

VERIFICATION
&

TESTING
RELEASE

Security considered at each phase

Initial and ongoing Security Training

Overall security is the priority

Testing and evaluation of security throughout

What is a Secure SDLC?

Secure Software Development LifeCycle (SSDLC)

SECURITY
TRAINING

REQUIREMENTS
PLANNING &

DESIGN
DEVELOPMENT

VERIFICATION
&

TESTING
RELEASE

Core Security
Training

Specialized
Training
Ongoing
Training

User Stories
Security
Stories

Abuse Stories
Risk Analysis

Risk Analysis
Attack Surface

Threat
Modeling

Peer Review
Static Analysis

Penetration
Testing

Attack Surface
Review

Continuous
Monitoring
Continuous
Feedback

Meet George

Meet George

Oh, THAT notice…

It Just Gets Worse…

Sensitive Data Exposure occurs when an
application does not adequately protect
sensitive information. The data can vary and
anything from passwords, session tokens, credit
card data to private health data and more can
be exposed.

A6: Sensitive Data Exposure

HTTPS (TLS Cert)

HTTP Security Headers

HSTS (HTTP Strict Transport Security)

A6: Mitigation

Stack Trace Anyone?

Good security requires having a secure
configuration defined and deployed for the
application, frameworks, application server, web
server, database server, and platform. Secure
settings should be defined, implemented, and
maintained, as defaults are often insecure.
Additionally, software should be kept up to date.

A5: Security Misconfiguration

Custom Error Handler

Single Error Message/Page

No Error Information – Including Return Code

Internal Error Logging

A5: Mitigation

What Threw the Stack Trace?

Text-based attacks that exploit the syntax of the
targeted interpreter.

Almost any source of data can be an injection
vector, including internal sources.

Injection flaws occur when an application sends
untrusted data to an interpreter.

A1: Injection

A1: SQL Injection

110 million customer records

Email, Mailing addresses, other
Personally Identifiable
Information (PII)

In The News (Target)

50 million customer records

Email, DOB, Password Hashes,
Challenge Questions & Answers

In The News (Living Social)

Command Injection

Inline SQL

A1: Example (1)

rs = statement.executeQuery(

"Select EmployeeId, LastName, FirstName, PhoneNumber " +

"From Employees " +

"Where EmployeeId = " + request.getParameter(”employeeId”))

Runtime.getRuntime().exec(String.format("myTestProcess.exe %s",

request.getParameter(”employeeId")))

sqlmap DEMO

http://sqlmap.org/

Written in Python

Exploitation DEMO

http://sqlmap.org/

Parameterized Queries

Object Relation Mappers (ORM)

A1: Mitigation

Remember Me?

XSS

Cross-Site Scripting

XSS flaws occur whenever an application takes untrusted data and
sends it to a web browser without proper encoding.

Execute scripts in the victim’s browser

Hijack user sessions

Deface web sites

Redirect the user to malicious sites.

A3: Cross-Site Scripting (XSS)

In The News (Sears)

Site defaced to contain flashing
images designed to cause
seizures

Some victims required hospital
care

In The News (EF)

HTML Context

URL Context

JavaScript Context

Reflected Example

<td><%= request.getParameter("Name") %></td>

<a href='<%= String.format("details.aspx?id=%s",

request.getParameter("Name")) %>'>

<a href='<%= String.format("javascript:redirect

('{%s}')", request.getParameter("Name"))

%>'>View

Browser Exploitation Framework
(BeEF)

http://beefproject.com/

Written in Ruby

Exploitation DEMO

http://beefproject.com/

Encoding, encoding, encoding

Validation is not the solution

Contexts to consider

Html, Url, JavaScript

HtmlAttribute, Css, Xml, XmlAttribute

Mitigations

Language Specific Encoding Libraries

HTTP Security Headers
X-XSS-Protection

Content-Security-Policy (CSP)

Mitigations (2)

CSRF

Cross Site Request Forgery

Admin console vulnerable to
CSRF allowing attackers to
perform the following:

Modify automatic renewals

Edit zone files

Name server management

In The News (GoDaddy)

Multiple manufacturers

4.5 Million Routers Compromised
in Brazil

In The News (TP-Link)

A CSRF attack forces a logged-on victim’s browser to send a
forged HTTP request, including the victim’s session cookie and
any other automatically included authentication information.

Audit logs will show the user made the transaction

User has no knowledge of the transaction

Cross-Site Request Forgery

Multiple Tabs

Authenticated Session

Cross-Site Request Forgery (CSRF) Example

Payload on attack page

Cross-Site Request Forgery (CSRF) Example (2)

<form id="csrfForm"

action="http://localhost:8080/csrf/content/vulnerable/changepa

ssword" method="POST" >

<input type="hidden" name="newPassword"

value="StorageRoomB" />

<input type="hidden" name="confirmPassword"

value="StorageRoomB" />

</form>

Request triggered from authenticated session

Cross-Site Request Forgery (CSRF) Example (3)

POST /csrf/content/vulnerable/changepassword HTTP/1.1

Host: localhost:8080

Cookie: JSESSIONID=2E7F523BE6E086F5EEB593B2B69842D2

Content-Type: application/x-www-form-urlencoded

Content-Length: 53

newPassword=StorageRoomB&confirmPassword=StorageRoomB

200 Response from web site

Cross-Site Request Forgery (CSRF) Example (4)

HTTP/1.1 200 OK

<div class="alert alert-dismissable alert-success">

Your password was successfully changed.

</div>

Simple Javascript Post

Exploitation DEMO

CSRF Mitigations

Random nonce for each request

Anti-Forgery Tokens

CSRF Guard (OWASP Project)

Browsers looking at headers (e.g., Origin)

Mitigations

Payload with incorrect csrf token

Cross-Site Request Forgery (CSRF) Mitigation (1)

<form id="csrfForm"

action="http://localhost:8080/csrf/content/vulnerable/changepa

ssword" method="POST" >

<input type="hidden" name="newPassword"

value="StorageRoomB" />

<input type="hidden" name="confirmPassword"

value="StorageRoomB" />

<input type="hidden" name="_csrf"

value="103ae2a3-d4d6-46e9-8ba6-

92188ff998c2" />

</form>

Request with invalid token submitted

Cross-Site Request Forgery (CSRF) Mitigation (2)

POST /csrf/content/vulnerable/changepassword HTTP/1.1

Host: localhost:8080

Cookie: JSESSIONID=2E7F523BE6E086F5EEB593B2B69842D2

Content-Type: application/x-www-form-urlencoded

Content-Length: 53

newPassword=StorageRoomB&confirmPassword=StorageRoomB&_csrf=10

3ae2a3-d4d6-46e9-8ba6-92188ff998c2

403 response from web site

Cross-Site Request Forgery (CSRF) Example (3)

HTTP/1.1 403 Forbidden

<div class="alert alert-dismissable alert-danger">

java.lang.NullPointerException

</div>

Secure Software Development LifeCycle (SSDLC)

SECURITY
TRAINING

REQUIREMENTS
PLANNING &

DESIGN
DEVELOPMENT

VERIFICATION
&

TESTING
RELEASE

Core Security
Training

Specialized
Training
Ongoing
Training

User Stories
Security
Stories

Abuse Stories
Risk Analysis

Risk Analysis
Attack Surface

Threat
Modeling

Peer Review
Static Analysis

Penetration
Testing

Attack Surface
Review

Continuous
Monitoring
Continuous
Feedback

Involve security through lifecycle

Security Training

Requirements

Design

Automated testing during implementation

Manual testing of critical security components during
implementation

Secure Code Review and Penetration Testing

Secure Lifecycle

Security Headers

Parameterized Queries/ORM

Treat Untrusted Data Appropriately

What Can I Do TODAY?

Questions?

Aaron

Twitter: @curea

Email: aaron.cure@cypressdefense.com

Steve

Twitter: @skosten

Email: steve.kosten@cypressdefense.com

Thanks for attending!

Questions?

Aaron

Twitter: @curea

Email: aaron.cure@cypressdefense.com

Steve

Twitter: @skosten

Email: steve.kosten@cypressdefense.com

Thanks for attending!

Cypress Data Defense, LLC
https://www.cypressdefense.com

aaron.cure@cypressdefense.com @curea
steve.kosten@cypressdefense.com @skosten

(720) 588-8133

