
ANALYZING THE MOST
COMMON PERFORMANCE
AND MEMORY PROBLEMS
IN JAVA

18 October 2017

• Working in Performance and Reliability Engineering Team
at Hotels.com
– Part of Expedia Inc, handling $72billion in bookings last year

• Founder of JavaPerformanceTuning.com

• Author of Java Performance Tuning (O'Reilly)

• Published over 60 articles on Java Performance Tuning & a
monthly newsletter for 15 years & around 10 000 tuning tips

• Also researched Black Hole Thermodynamics & published
papers on Protein Structure Prediction with the UKs largest
Cancer Research organisation

Who am I?

2

Remember

• There Is ALWAYS A Bottleneck
– Otherwise processing would take no time at all

• So having a bottleneck is NOT the problem

• Failing to achieve target times is the problem
– Which means you need targets!

• For failing targets: find the bottleneck that applies, and fix them

Before you start analyzing

3

• Resource leaks

• Slow DB queries

• Inefficient application code

• Too many DB queries

• Concurrency issues

• Memory leaks

• Configuration issues (pooling thresholds, request throttling)

• Slow DB

• GC pauses

• Memory churn

Most Common Problems

4

I gave another talk at devoxx a few months ago:

“10,000 Java performance tips over 15 years - what did I learn?”

The talk today does NOT depend on you having seen that one,

but does lead on from that one

so I recommend watching it if you want to optimize yourself

https://www.youtube.com/watch?v=OYpTn0nWKR4

You might want to see another useful talk

5

https://www.youtube.com/watch?v=OYpTn0nWKR4

• 4. Resource leaks

• 2. Slow DB queries

• 3. Inefficient application code

• 2. Too many DB queries

• 6. Concurrency issues

• 4. Memory leaks

• 1. Configuration issues (pooling thresholds, request throttling)

• 2. Slow DB

• 5. GC pauses

• 4. Memory churn

Most Common Problems

6

Configuration Issues

7

• Resource leaks

• Slow database queries

• Inefficient application code

• Too many db queries

• Concurrency issues

• Memory leaks

• 1. Configuration issues (pooling thresholds, request throttling)

• Slow DB

• GC pauses

• Memory churn

Most Common Problems

8

Not a problem specific to Java, all projects have this

There is an awesome tool for this …

Configuration issues

9

diff

Configuration issues

10

Seriously, at least half the configuration issues can be fixed by diff’ing the config
between the current and the target deployment

You need to do this in a structured and disciplined way
• Have the config in a diff’able format using whatever diff tool you prefer
• Including ALL configs that apply

– Not just the top-level configs

• Never deploy to production without manually confirming all config changes
– Using the PRODUCTION config, not dev or UAT or …
– Diffing the wrong config and assuming that applies to the production diff is a common

mistake

Configuration issues

11

Datastore Issues

12

• Resource leaks

• 2. Slow DB queries

• Inefficient application code

• 2. Too many DB queries

• Concurrency issues

• Memory leaks

• 1. Configuration issues (pooling thresholds, request throttling)

• 2. Slow DB

• GC pauses

• Memory churn

Most Common Problems

13

At the Datastore side, there are always tools that can analyse performance,
these are specific to each Datastore and there’s little that I can say generically
except

• Indexes always matter

• Caching in memory always makes it faster

• Faster disks always makes it faster

• The schema matters enormously

Datastores

14

On the Java side: the datastore request is always much more costly than a local
file write - so you can log it; and always has a generic communication layer
which either supports monitoring directly or is easily wrapped. You monitor the
requests and results and analyse looking for

• Individual queries that take a long time (improve the query: likely an index or
schema change)

• Multiple queries that are identical (is it an inefficiency? can they be cached or
reduced in frequency?)

• Changes from baseline performance (is datastore load causing a slowdown?)

• Multiple queries that differ only in a parameter (can be combined or use a
parametrized query?)

Datastore communications

15

If you have connection pools, you absolutely MUST

monitor the waiting time to acquire the connection from the pool

Datastore connection pool

16

public interface Say {

public boolean sayHi();

public boolean sayBye();

}

Wrapping Interfaces

17

public class SayToOut implements Say {

public boolean sayHi() {print(500, "hello"); return false;}

public boolean sayBye() {print(800, "goodbye"); return false;}

private void print(long pause, String s) {

try {Thread.sleep(pause);} catch (InterruptedException e) {};

System.out.println(s);

}

}

Wrapping Interfaces

18

public class SayWrapper implements Say {
private Say say;
public SayWrapper(Say say) {this.say = say;}

public boolean sayHi() {return log(System.nanoTime(), say.sayHi());}
public boolean sayBye() {return log(System.nanoTime(), say.sayBye());}

private boolean log(long start, boolean ret) {
System.out.println("sayHi took: "+(System.nanoTime()-start)+ " ns");
return ret;

}

Wrapping Interfaces

19

say.sayHi()

is transparent to the system whether it is a

say = new SayToOut()

or

say = new SayWrapper(new SayToOut())

Wrapping Interfaces

20

JDBC API is implemented entirely with interfaces, so perfect candidate for
wrapping in a logging layer

Consequently, there are many available, (and very easy to roll your own)

I use p6spy, https://github.com/p6spy/p6spy

JDBC Wrapper

21

https://github.com/p6spy/p6spy

Example log entry

• current time|execution time|category|connection id|statement SQL
String|effective SQL string (if different)

• 1494281488717|91|statement|connection 1|SELECT * FROM TIPS WHERE
KEYWORD='P6SPY‘

Easily processed using your preferred tool for processing field separated data

P6Spy

22

Example log entry

• 1494281488717|911|statement|connection 1|SELECT * FROM TIPS WHERE
KEYWORD='P6SPY‘

• Look for individual big times

• But note that result sets are batched (pagination) so need to combine multiple
log entries with the same connection and query with further results

P6Spy – slow DB Queries

23

Example log entry

• 1494281488717|91|statement|connection 1|SELECT * FROM TIPS WHERE
KEYWORD='P6SPY‘

• 1494281488817|91|statement|connection 1|SELECT * FROM TIPS WHERE
KEYWORD='P6SPY1‘

• Look for lots of entries with the same connection and with very close
timestamps, “chatty requests”

P6Spy – too many DB queries

24

Example log entry

• 1494281488717|911|statement|connection 1|SELECT * FROM TIPS WHERE
KEYWORD='P6SPY‘

• 1494281488917|1211|statement|connection 1|SELECT * FROM TIPS
WHERE KEYWORD='P6SPY‘

• Look for lots of individual big times – DB is overloaded

P6Spy – slow DB

25

Inefficient application code

26

• Resource leaks

• 2. Slow DB queries

• 3. Inefficient application code

• 2. Too many DB queries

• Concurrency issues

• Memory leaks

• 1. Configuration issues (pooling thresholds, request throttling)

• 2. Slow DB

• GC pauses

• Memory churn

Most Common Problems

27

Execution profiling looks at what is taking the most time running in your
application

There are two types of execution profiles

• Sampling
– Takes a sample every N milliseconds

– Low overhead but misses out what’s happening between the samples
• Instrumented

– Changes the bytecode to wrap every method with the time it takes

– Significant overhead for small methods – which is of course the recommended way to
code – but doesn’t miss anything

Execution profiling

28

In practice, you almost always want to use the sampling profiler unless you
know exactly what you are doing

I’ll give an example with the VisualVM profiler that is included with the JDK
distribution

Execution profiling

29

DEMO

Execution profiling

30

Resources and Memory

31

• 4. Resource leaks

• 2. Slow DB queries

• 3. Inefficient application code

• 2. Too many DB queries

• Concurrency issues

• 4. Memory leaks

• 1. Configuration issues (pooling thresholds, request throttling)

• 2. Slow DB

• GC pauses

• 4. Memory churn

Most Common Problems

32

try (InputStream in = new InputStream(x);

OutputStream in = new OutputStream(y))

{

//do stuff

}

Always use try with resources

33

Handles an Exception being thrown in any constructor

• Still correctly closes everything that has been opened prior to the exception

• AND won't throw any NPE for variables not yet initialized

• AND you’ll get the constructor Exception, not one thrown during close() calls
Handles an Exception being thrown while using any of the resources

• Still correctly closes all open resources

• AND you’ll get the right Exception, not one thrown during close() calls
Handles Exceptions being thrown while closing

• And will rethrow the first exception so you know there’s an issue

try with resources will always remember to close all
resources regardless of when exceptions happen

34

Resources without try-with-resources is code smell

35

DEMO

Memory profiling & analysis

36

• P6Spy (JDBC logging)
– Suitable for production

• GC Logging
– Suitable for production

• GCViewer
– Suitable for production

• Heap Dumping
– Suitable for production – but! freezes the JVM so only when necessary

• Eclipse MAT
– Suitable for production

• VisualVM
– NOT Suitable for production

Tools

37

