
@spoole167

Anatomy of Java
Vulnerabilities

Java2Days 2017
Steve Poole

@spoole167

About me

Steve Poole

IBM Lead Engineer / Developer advocate

Making Java Real Since Version 0.9

Open Source Advocate

DevOps Practitioner (whatever that means!)

Driving Change

@spoole167

Consider this two character change

@spoole167

• Fixes a bug in java.math.Double.parseDouble()

• The bug causes a infinite hang when parsing an obscure value:
• 2.2250738585072012e-308

• First noticed and reported in 2001

• Sat in a public bug database for 10 years

• Received very little attention

Interesting corner case, but not really significant…

@spoole167

Not a corner case after all

• If an attacker can make a server parse the bad value => DoS

• If code parses a Double from untrusted String data, it’s vulnerable

• Nearly every Java-based web service was affected

• Example:
• Find a HTTP header which is a double

• Send HTTP requests with the header set to the bad value

• Server’s worker threads are quickly tied up in infinite loops

• Server cannot process any requests => DoS

@spoole167

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Large cost to everyone to produce and apply patches
So many servers were brought to their knees ‘just for kicks’

Trivial to exploit
Curious
people
everywhere

Huge impact

Rediscovered in 2011:

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

@spoole167

This talk is a technical horror story

https://www.flickr.com/photos/koolmann/

@spoole167

What is a Vulnerability?

“A vulnerability is a bug which can be exploited by an attacker”

@spoole167

Exploits are many and various

• Exploits can attack your availability
• Bringing your system down by making it crash

• Making your system unresponsive though excessive memory / CPU / network usage

• Exploits can reduce Integrity
• Modification of application data

• Arbitrary code execution

• Exploits can breech confidentiality
• Privilege elevation

• Exposure of sensitive information

@spoole167

Why should you care?

@spoole167https://www.flickr.com/photos/koolmann/

Cybercrime realities

https://www.flickr.com/photos/koolmann/

@spoole167

h
tt

p
s:

//
w

w
w

.f
lic

kr
.c

o
m

/p
h

o
to

s/
st

ig
n

yg
aa

rd
/

Do you think cybercriminals are lone hackers?

@spoole167

Organized Cybercrime is the most profitable type of crime

• In 2016 Cybercrime was estimated to be worth 445 Billion Dollars a Year

• In 2013 the United Nations Office on Drugs and Crime (UNODC) estimated
globally the illicit drug trade was worth 435 Billion Dollars

• Guess which one has the least risk to the criminal ?

• Guess which is growing the fastest ?

• Guess which one is the hardest to prosecute ?

• Guess which one is predicted to reach 2100 Billion Dollars by 2019?

@spoole167

Another vulnerability

@spoole167

I have this directory…

“/Users/spoole/foo bar” with a space in the name

I want to refer to it in a URL….

"file:///Users/spoole/foo%20bar"

URL u=new URL("file:///Users/spoole/foo%20bar");

File f=new File(u.getPath());

System.out.println("path="+f.getAbsolutePath());
System.out.println("exists="+f.exists());

path=/Users/spoole/foo%20bar

exists=false

URL u=new URL("file:///Users/spoole/foo%20bar");

File f=new File(u.getPath());

System.out.println("path="+f.getAbsolutePath());
System.out.println("exists="+f.exists());

@spoole167

Oops – forgot to decode it

URL u=new URL("file:///Users/spoole/foo%20bar");

URI uri = u.toURI();

File f=new File(uri.getPath());

System.out.println("path="+f.getAbsolutePath());

System.out.println("exists="+f.exists());

URL u=new URL("file:///Users/spoole/foo%20bar");

URI uri = u.toURI();

File f=new File(uri.getPath());

System.out.println("path="+f.getAbsolutePath());

System.out.println("exists="+f.exists());

path=/Users/spoole/foo bar

exists=true

@spoole167

What would happen if someone had created a
directory called

”/Users/spoole/foo%20bar” ?

@spoole167

What would happen if someone had created a
directory called

”/Users/spoole/foo%20bar” ?

path=/Users/spoole/foo%20bar

exists=true

@spoole167

Not a big deal?

@spoole167

On Windows anyone can create a top level directory

md “C:\foo%20bar”

@spoole167

Still not a big deal?

@spoole167

What happens if your extensions path has an entry like

“C:/Program%20Files/optional-product/extensions”

And you didn’t have the product installed.
You might never notice

@spoole167

Suppose the JVM didn’t decode the entry when
searching for dll’s etc

And suppose someone created a directory that matched
“C:/Program%20Files/optional-product/extensions”

Someone might be able to get your application to load
sinister dlls

Because of 1 line of missing code:
URI uri = u.toURI();

@spoole167

Not quite a true story.
But a similar vulnerability
has been fixed in the JVM

https://www.flickr.com/photos/koolmann/

@spoole167

Vulnerabilities are almost always simple
there are no smoking guns
Exploits are chaining together vulnerabilities

h
tt

p
s:

//
w

w
w

.f
lic

kr
.c

o
m

/p
h

o
to

s/
8

4
7

4
4

7
1

0
@

N
0

6
/

@spoole167

Who’s being targeted?

• Middle level executives – afraid of their bosses?

• New joiners – easy to make a mistake?

• Busy and harassed key individuals – too busy to take time to consider?

• Disgruntled employees – want to hurt the company? Make some $?

• And Developers – the golden goose.

The bad guys prey on the weak, vulnerable and ignorant

@spoole167

Developers

• Why ?

• We know the inside story
• We write the code
• We have elevated privileges
• We are over trusting
• We use other peoples code and tools without inspection
• we are ignorant of security matters

The bad guys prey on the weak, vulnerable and ignorant

Don’t agree?

The bad guys prey on the weak, vulnerable and ignorant:

That’s us

Ever googled for:

“very trusting trust manager”

“Getting Java to accept all certs over HTTPS”

“How to Trust Any SSL Certificate”

“Disable Certificate Validation in Java”

TrustManager[] trustAllCerts = new TrustManager[]{

new X509TrustManager() {

public X509Certificate[] getAcceptedIssuers() {

return null;

}

public void checkClientTrusted(

X509Certificate[] certs, String authType) {

}

public void checkServerTrusted(

X509Certificate[] certs, String authType) {

}

public boolean isClientTrusted(X509Certificate[] cert) {

return true;

}

public boolean isServerTrusted(X509Certificate[] cert) {

return true;

}

}}

Ever written

something

like this?

We’ve all done something like that

We’ve all done something like that

We do it all the time

We’ve all done something like that

We do it all the time

The whole world does it

How bad can it be?

We’ve all done something like that

We do it all the time

The whole world does it

Github search “implements TrustManager” ….

We’ve found 72,609 code results

AlwaysValidTrustManager

TrustAllServersWrappingTrustManager

A very friendly, accepting trust
manager factory. Allows anything
through. all kind of certificates are

accepted and trusted.

A very trusting trust manager that
accepts anything

// Install the all-trusting trust
manager

OverTrustingTrustProvider

AllTrustingSecurityManagerPlugin.java

AcceptingTrustManagerFactory.java

AllTrustingCertHttpRequester.java

We’ve all done something like that
Sometimes it even a ‘feature’

“A vulnerability is a bug which can be exploited by an attacker”

“A vulnerability is a bug which can be exploited by an attacker”

“A vulnerability is also a feature which can be exploited by an
attacker”

@spoole167

Vulnerabilities • Bugs and design flaws in your software
and the software you use.

• Everyone has them.

• Researchers are looking for them all the
time.

•So are the bad guys

https://www.flickr.com/photos/electronicfrontierfoundation/

@spoole167

The process of managing
vulnerabilities

@spoole167

“Common Vulnerabilities & Exposures”

• https://cve.mitre.org

• The Standard place find details about ‘CVEs’

• International cyber security community effort

• Common naming convention and unique references.

• Allows you to know when a problem is resolved in something you are
using

@spoole167

‘CVEs’ https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=*

keywords=java serialization “12”
keyword=java “1662”

@spoole167

CVE-2016-2510 BeanShell (bsh) before 2.0b6, when included on the
classpath by an application that uses Java serialization
or XStream, allows remote attackers to execute
arbitrary code via crafted serialized data, related to
XThis.Handler.

CVE-2016-0686 Unspecified vulnerability in Oracle Java SE 6u113,
7u99, and 8u77 and Java SE Embedded 8u77 allows
remote attackers to affect confidentiality, integrity, and
availability via vectors related to Serialization.

CVE-2015-4805 Unspecified vulnerability in Oracle Java SE 6u101,
7u85, and 8u60, and Java SE Embedded 8u51, allows
remote attackers to affect confidentiality, integrity, and
availability via unknown vectors related to Serialization.

keywords=java serialization (first three as of May 11th)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2510
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0686
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4805

@spoole167

CVE-2016-0686

“Unspecified vulnerability in Oracle Java SE 6u113, 7u99, and 8u77
and Java SE Embedded 8u77 allows remote attackers to affect
confidentiality, integrity, and availability via vectors related to
Serialization.”

That’s all you will find about this fix

Talking about the details of a fix or flaw in public is just like
tweeting your credit card # and pin

So we don’t

We give you information about the impact

@spoole167

Common Vulnerability Scoring System

• Base CVSS combines several aspects into a single score
• Attack vector and complexity – local, remote etc.
• Impact – integrity, confidentiality etc.
• Privileges required?

• Represented as a base score and a CVSS vector
• CVSS 9.6 (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H)

• Additional temporal CVSS considers aspects that may change over time
• Availability of an exploit
• Availability of a fix

• IBM X-Force
• IBM’s security research organization
• Provides base and temporal CVSS scores for all published CVEs

@spoole167

Example CVSS vector

• CVSS Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H

• Attack Vector: N (network)
• Attack Complexity: L (low)
• Privileges Required: N (none)
• User Interaction: R (required)
• Scope: C (changed)
• Confidentiality impact: H (high)
• Integrity impact: H (high)
• Availability impact: H (high)

• Using the CVSS v3.0 calculator

• Low = 0.0-3.9. Medium= 4.0-6.9 High= 7.0-8.9 Critical = 9.0-10.0

Note – assessments are based on
the assumption that everyone
behaves “sensibly”
If you give everyone root access to a
machine your mileage will differ

https://www.first.org/cvss/calculator/3.0

@spoole167

How are vulnerabilities communicated?

• Oracle
• CPU Advisory

• Risk Matrix

• IBM
• Java and Product Security Bulletins

• All IBM Security Bulletins are communicated on the PSIRT blog

• Can subscribe to Bulletins for specific products using My Notifications

• Java SDK Developer Centre

https://www.ibm.com/blogs/psirt/
https://www-01.ibm.com/software/support/einfo.html
https://developer.ibm.com/javasdk/support/security-vulnerabilities/

@spoole167

What if I discover a vulnerability?

• Report it responsibly

• Oracle or OpenJDK component (e.g. HotSpot VM, AWT, Net, Plugin)
• Report it to Oracle

• IBM component (e.g. J9VM, IBM ORB, IBM JCE/JSSE)
• Report it to IBM

• Dont
• shout about it!
• send a mail to an OpenJDK mailing list
• post the details on a forum/blog
• sell it to the bad guys
• worry about apparent lack of severity – always report it

https://www.oracle.com/support/assurance/vulnerability-remediation/reporting-security-vulnerabilities.html
https://www-03.ibm.com/security/secure-engineering/report.html

@spoole167

How are Java vulnerabilities addressed?

• Ideally as quickly as possible, but it depends on
• CVSS

• Impending disclosure

• Resources

• In general:
• Issues categorised internally

• Fixes targeted for a future scheduled regular security release

• Fixes may be deferred or brought forward if things change

• Extremely urgent issues may trigger an out of cycle release

@spoole167

Vulnerability applicability

• High CVSS is irrelevant if the issue does not apply to you
• Java plugin flaws don’t apply to appserver deployments
• JAXP issues aren’t relevant if you don’t parse untrusted XML data

• Use the Oracle CPU Risk Matrix
• Base CVSS scores and vectors
• Consider the attack vector for the vulnerability
• Oracle Applicability notes

• IBM customers: if in doubt, contact IBM Support
• IBM Products have detailed applicability information

If you don’t know what your code does: you don’t know if
you’re vulnerable

If you don’t know what your dependencies do: you don’t
know if you’re vulnerable

BTW: You don’t know all your dependencies

@spoole167

Attack Vectors

@spoole167

Attack Vectors – Untrusted Code

• Code is able to bypass or escape the SecurityManager

• Affects any application which runs untrusted code under a security manager
• Some server applications do this!

• Flaw can be in any component on the classpath
• Partial bypass

• Exposure of sensitive information – e.g. system property values, heap contents
• Arbitrary network connections

• Full bypass
• Arbitrary code execution and access to operating system
• Many server deployments run as root/admin

SecurityManager offers no
protection against CPU DoS
attacks or Infinite loops

@spoole167

Attack Vectors – Plugin / Web Start

• True “client-side” issues

• Affect JREs installed as the system default

• Exploits can be triggered remotely, usually via a browser
• Malicious applet or JNLP file

• May involve platform or browser specific components
• Installer/updater
• Windows Registry entries
• Browser callbacks
• OS Shell behaviour (command line parsing)
• Inappropriate privilege elevation

• Applets and browser plugins are deprecated in JDK 9

@spoole167

Attack Vectors – Untrusted Data

• A Java SE API mishandles a specific type of data
• XML, JPG, URLs, Fonts, JARs, Strings
• Issues tend to be more severe when the API is implemented natively

• Maliciously-crafted data can exploit the bug
• DoS – CPU/memory usage, crash
• Exposure of sensitive data – arbitrary memory access
• Arbitrary code execution – code injection, disabling of SecurityManager

• Affects any application which handles the specific data type from untrusted sources

• Examples
• A server application which allows users to upload images
• A server application which accepts SOAP requests
• A server application with an XML-based REST API

JPEG 2000 image exploit on the OpenJPEG openjp2 version 2.1.1
A specially crafted image caused a buffer overflow in the JPEG code and overwrites
memory in such a way to allow allow arbitrary code execution

h
tt

p
s:

//
w

w
w

.f
lic

kr
.c

o
m

/p
h

o
to

s/
m

ed
iu

m
p

an
d

a/

https://www.flickr.com/photos/jasonahowie/

Content-Type: %{(#_='multipart/form-data').

(#_memberAccess=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS)

.

(@java.lang.Runtime@getRuntime().exec('curl

localhost:8000'))}

https://dzone.com/articles/will-it-pwn-cve-2017-5638-remote-code-
execution-in

Apache Struts

OGNL

If type contains “multipart/form-data’
try to parse it as form data

This fails and as part of the building an error message the
OGNL is evaluated…

@spoole167

Attack Vectors – Cryptographic Issues

• Protocol flaws
• Many implementations affected (Java, GSKit, OpenSSL, Browsers)
• BEAST, POODLE, SLOTH, Logjam, Bar Mitzvah

• Implementation flaws
• Specific to Java
• No fancy names!

• Variable Impact
• DoS
• Private key exposure
• Decryption of encrypted data

@spoole167

Attack Vectors – Local

• Can only be exploited by a local user

• Exposure of sensitive data
• E.g. temp files with inappropriate permissions

• Code injection
• E.g. native code loaded from an unexpected location due to bad LIBPATH

• May lead to a remotely exploitable vulnerability
• E.g. local user plants malicious code which can be executed remotely

• Usually low CVSS due to the access required

You don’t think you’re vulnerable to local attacks?

@spoole167

h
ttp

s://en
.w

ikip
ed

ia.o
rg

/w
/in

d
ex.p

h
p

?cu
rid

=5
4

0
3

2
7

6
5

@spoole167

Wanna Cry?
Steve Poole

@spoole167

Wanna Cry

• Friday, 12 May 2017

• Has infected 250K computers in 150+ countries

• It encrypts data and holds it for ransom

• The computer owner has a limited time to pay (in bitcoin) about $500

• So far the bitcoin owners have received about 50 bitcoins ~= $85K ($3/infected
machine)

UK: National Health Service impacted:

India: All ATMs closed
Nissan: Halted all production
Renault: Halted some production

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

Your Java server is not as secure as you think

@spoole167

More Examples

@spoole167

Deserialization Vulnerabilities

• Abuse of the readObject() method of one or more classes
• readObject() is invoked before the data is deserialized

• Attackers use “gadget chains” in classes on the server’s classpath
• Usually a complex set of nested objects which result in a Runtime.exec()
• Costly to fix – servers may have multiple copies of the vulnerable code

• Applications are vulnerable if they:
• Have the vulnerable code on their classpath
• Accept untrusted serialized data (this is much more common that you might think!)

• Known for years, but came to prominence with problem in Apache Commons remote code
execution
• Many products affected – e.g. WebLogic, WebSphere, Tomcat, JBoss, Jenkins

• Serialization filtering was added to the Java runtime in January 2017
• JEP 290 – Filter Incoming Serialization Data
• Allows classes to be whitelisted

http://openjdk.java.net/jeps/290

@spoole167

Example vulnerability – JDWP

• JDWP = Java Debug Wire Protocol
• Disabled by default – enabled with a command line option
• JVM internals can be observed and modified remotely
• No authentication required
• Classes can be changed, code can be injected

• Well-known online banking website
• JDWP enabled on public facing servers
• Presumably JDWP was enabled in development/test…

• Found by a researcher after a simple port scan
• Bug bounty => ££££

• Simple fix – disable JDWP!

@spoole167

More Code

public class HelpfulClassLoader {

private Properties p=new Properties(System.getProperties());

public HelpfulClassLoader() {

p.put("default", ”foo.StringHandler");

p.put("foo", "com.ibm.runtimes.demo.foo");

}

public Class loadClassHelpfully(String handler) throws ClassNotFoundException {

String className=p.getProperty(handler);

try {

return Class.forName(className);

} catch (Exception e) {

throw new ClassNotFoundException("could not create class for handler” +handler+" with

value "+className);

}}}

HelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully("default");

System.out.println("class for default="+c);

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.foo

HelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully("default");

System.out.println("class for default="+c);

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

class for default=class foo.StringHandler

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.foo

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.fooHelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully(”foo");

System.out.println("class for foo="+c);

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.foo

java.lang.ClassNotFoundException: could not create class for handler foo with value com.ibm.runtimes.demo.foo
at

com.ibm.runtimes.demo.vulnerabilities.samples.HelpfulClassLoader.loadClassHelpfully(HelpfulClassLoader.java:23)
at com.ibm.runtimes.demo.vulnerabilities.samples.HelpfulClassLoader.main(HelpfulClassLoader.java:40)

HelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully(”foo");

System.out.println("class for foo="+c);

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.fooHelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully(”java.ext.dirs");

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

handler Class name

default foo.StringHandler

foo com.ibm.runtimes.demo.fooHelpfulClassLoader h=new HelpfulClassLoader();

try {

Class c=h.loadClassHelpfully(”java.home");

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

java.lang.ClassNotFoundException: could not create class for handler java.home with value

/Users/spoole/Library/Java/Extensions:
/Library/Java/JavaVirtualMachines/jdk1.8.0_102.jdk/Contents/Home/jre/lib/ext:
/Library/Java/Extensions:/Network/Library/Java/Extensions:
/System/Library/Java/Extensions:
/usr/lib/java

@spoole167

Something like this helpful code

Coupled with the missing URL decoder check and the
remote execution code inside Wanna Cry

And your Java application is compromised.

“A vulnerability is a bug which can be exploited by an
attacker”

“A vulnerability is also a feature which can be exploited
by an attacker”

“A vulnerability is a bug which can be exploited by an
attacker”

“A vulnerability is also a feature which can be exploited
by an attacker”

“A vulnerability is also a developer aid which can be
exploited by an attacker”

@spoole167

Helping you to be more informed

@spoole167

cwe.mitre.org

Coding
Practises

@spoole167

@spoole167

1. Input Validation and Representation

2. API Abuse

3. Security Features

4. Time and State

5. Error Handling

6. Code Quality

7. Encapsulation

* Environment

The Seven Pernicious Kingdoms

@spoole167

Secure
Coding
Guidelines
for
Java SE

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Analysis
Tools

find-sec-bugs.github.io

Analysis
Tools

Secure by Design - Security Design Principles for the

Rest of Us

https://www.slideshare.net/EoinWoods1/secure-by-design-security-design-principles-
for-the-rest-of-us

Online
Guides

@spoole167

Summary

@spoole167

Reducing Risk

• Keep all Java instances up to date
• Use vulnerability scanning tools

• Various around. From source code level to binary signature analysis.

• Don’t write custom security managers
• Don’t write custom crypto code
• Don’t write custom XML parsers
• Use modern encryption protocols and algorithms
• Be very careful with:

• Untrusted data , Deserialization (including RMI and JMX)
• JDWP, Runtime.exec()
• Native code

If you are receiving
data of any sort:
validate it.

@spoole167

Keeping safe: it’s in your hands

Keep current. Every vulnerability fix you apply is one less way in.
Compartmentalize. Separate data, code, access controls etc.
Just like bulkhead doors in a ship: ensure one compromise doesn’t sink your boat.
Design for intrusion. Review you levels of ‘helpfulness’ and flexibility
Learn about Penetration Testing
Learn about security tools & services - IBM App Scan, lgtm.com
Learn about secure coding - https://cwe.mitre.org

http://www.oracle.com/technetwork/java/seccodeguide-139067.html ,

Understand that making your development life easier makes the hackers job easier

There are bad guys out there and your
application is at risk

Don’t make it worse by ignoring the problem

https://www.flickr.com/photos/koolmann/

@spoole167https://www.flickr.com/photos/koolmann/

Thank you

Any questions?

https://www.flickr.com/photos/koolmann/

